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We study the question of existence and uniqueness of non-ideal gas in Rd with
multi-body interactions among its particles. For each k-tuple of the gas par-
ticles, 2 [ k [ m0 <., their interaction is represented by a potential function Fk
of a finite range. We introduce a stabilizing potential function Fk0 , such that
F(x1,..., xk0 ) grows sufficiently fast, when diam{x1,..., xk0} shrinks to 0. Our
results hold under the assumption that at least one of the potential functions is
stabilizing, which causes a sufficiently strong repulsive force. We prove that (i)
for any temperature there exists at least one Gibbs field, and (ii) there exists
exactly one Gibbs field t at sufficiently high temperature, such that for any q > 0,
Eeq |tV| [ C(V0) <. for all volumes V smaller than a certain fixed finite volume V0.
The proofs use the criterion of the uniqueness of Gibbs field in non-compact
case developed in ref. 4, and the technique employed in ref. 1 for studying a gas
with pair interaction.

KEY WORDS: Gibbs state; Gibbs measure; non-ideal gas in Rd; multi-body
interaction; uniqueness; existence; Dobrushin uniqueness condition.

1. INTRODUCTION

This work is the second part of our studies of the uniqueness region of non-
ideal classical gas. The first part of this work, published in ref. 1, was
devoted to the case of pair interactions between gas particles. In the present
paper, we study the case of multi-body interactions.
Our main goal is to use the technique of Dobrushin’s type for the

study of continuous statistical physics models. It is a far different approach



with respect to the analysis employed in the works of Ruelle (2) and Green-
berg. (3) Besides, the approach we use gives rather explicit conditions for the
uniqueness that is also one of the aims of this work.
The method we use here, as well as in ref. 1, amounts to checking the

conditions of a general theorem from ref. 4. These conditions split in two
groups: (1) the compactness conditions; (2) the contraction conditions. The
contraction conditions are close to those from Dobrushin’s work. (5) The
difference is that the Dobrushin’s contraction conditions from ref. 5 is
normally checked for total spin space while that from ref. 4 is checked here
only on a compact sub-space of the whole spin space, although the spin
space of a considered model may be non-compact. This difference is an
essential advantage of the condition from ref. 4 over that from ref. 5 since
it allows us to get uniform estimates that we need for our argument and
that would not be available, if they were verified on a non-compact space.
We note that the theorem from ref. 4 that we use has been proved for
lattice models. Therefore, to apply it to gas models in Rd, we have to map
the studied continuous model to an equivalent lattice model. We do so via
partitioning Rd into small cubes and considering all particle configurations
in every cube as the spin space at an appropriate site of Zd.
In this work, we follow the plan of ref. 1. However, the verification of

the uniqueness conditions for a multi-body interaction case, compared to
that for a pair interaction one, requires some extension of the conditions on
potential functions, and accordingly, some new computations. The reason
of the changes needed to treat the multi-body interaction case is due to the
following simple fact. We recall that the condition we check is physically
speaking, a repulsiveness of the particles at small distances. Assume that
Fm0 , m0 > 2, is the potential function giving the energy of m0-particle
interactions. Assume also that Fm0 takes negative values, bounded from
below. Then m0 particles attract each other. If there are N particles in a
small volume then there exist Cm0N groups, each having m0 particles and
giving its contribution to the attraction. A repulsive potential is needed. Let
F2 be the repulsive potential. Then, there are C

2
N pairs of the particles in

the same volume, each one having repulsive energy. The number C2N of the
pairs of particles and the number Cm0N of the groups of m0 particles in a
volume containing N particles, have different asymptotic as NQ.;
namely, C2N/C

m0
N Q 0. To prevent a collapse of infinite number of particles

in a bounded volume caused by the predominance of the attraction, the
repulsive potential F2 must have a special property that would compensate
this difference. Namely, it must grow if the particles became closer each to
other of particle positions. Therefore, we introduce a stabilizing potential
function Fk0 which gives the main repulsive energy of the model. We study
the case when the multi-bodiness is bounded from above by some
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integer m0. As we shall see, in the case k0 < m0, the stabilization is ensured,
when the stabilizing potential Fk0 has a sufficient strong singularity at the
diagonal of (Rd)k0 and grows sufficiently fast nearby the diagonal.
However, in the case k0=m0, it suffices that Fk0 is large, although finite, at
the diagonal.
Our conditions imply also the existence of at least one Gibbs field for

any temperature (Theorem 2). It is worth to remark that the existence is
proved under the same conditions that provide the uniqueness. This exis-
tence result was not proved in ref. 1.
In Section 2, we give the assumptions on the potential functions and

define the stabilizing potential function. Section 3 contains the main results
of the work. We prove our results in Section 4.

2. THE MODEL

The spin spaceX is the set of all locally finite point configurations on Rd.
The reference measure n is the non-normalized Poisson measure on X, that
gives weight |V|

N

N! to the set of all configurations of X having N particles in
a bounded volume V. The detailed descriptions of the measurable space
(X, n) is given in ref. 1, Section 1.1. Next we describe the assumptions on
potential functions Fk(x1,..., xk): RdkQ R, k \ 2, determining the system.

(i) Finite group: There exists an integer m0 such that

Fk(x1,..., xk) — 0, for all k > m0

and

inf Fm0 (x1,..., xm0 ) < 0

(ii) Finite range: Each potential function is of finite range, i.e., there
exists a constant D > 0 such that for any 2 [ k [ m0

Fk(x1,..., xk)=0, if diam{x1,..., xk} > D

(iii) Symmetry:Fk(x1,..., xk)=Fk(xi1 ,..., xik ), for any k, any (x1,..., xk)
¥ Rdk, and any permutation (i1,..., ik) of (1,..., k).

(iv) Translation invariance: Fk(x1+z,..., xk+z)=Fk(x1,..., xk), for
any k, any (x1,..., xk) ¥ Rdk, and any z ¥ Rd.

(v) Boundness from below: There exists a constant M> 0 such that
Fk(x1,..., xk) \ −M, for all k and all (x1,..., xk) ¥ Rdk.
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(vi) No hard core: For every k, the function Fk(x1,..., xk) is contin-
uous at all (x1,..., xk) ¥ Rdk, except maybe the case when x1=x2
=·· ·=xk.

Since the functions Fk are continuous out of every neighborhood of the
diagonals {x1=·· ·=xk} we shall assume that the constant M from (v) is
such that for some d0 > 0 and all k

sup
diam{x1 ,..., xk} > d0

|Fk(x1,..., xk)| [M

A concrete value of d0 will be chosen later, when we introduce the stabiliz-
ing potential function.
As usual, the Hamiltonian of a finite configuration s ¥X is

H(s)=C
m0

k=2
C

x1 ,..., xk ¥ s
Fk(x1,..., xk) (1)

For two configurations s and y having no common particles, let

F(s, y)=C
m0

k=2
C

x1 · · · xr ¥ s
y1 · · · yp ¥ y

p+r=k, p \ 1, r \ 1

Fk(x1,..., xr, y1,..., yp) (2)

be the energy of the interaction between s and y.
Let V ı Rd and s ¥X be such that V is bounded, s … V, and let y … Vc

then the value of the conditional Hamiltonian at s under the condition y is

H(s | y)=H(s)+F(s, y) (3)

Observe that F(s, y) is finite even though the configuration y can be infi-
nite because the potentials are of finite range.

Remark 1. Due to assumption (ii), F(s, y) and, consequently,
H(s | y) depends on y through solely its restriction to the D-neighborhood
of V. With some abuse of notations, we shall denote this restriction by the
same letter y and |y| will denote the number of particles in this neigh-
borhood. Further “V denotes the D-neighborhood of V.
The potential function Fk0 is said to be stabilizing if

(1) in the case k0 < m0, let d1 > 0 and A1 > 0 be such that

dd(m0 −1)1 e2 1
D
d1
+32 d+1M<

A1
2m0 −k0km00

(4)
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then

Fk0 (x1,..., xk0 ) \
A1
rd(m0 −1)

if diam{x1,..., xk0}=r [ d1 (5)

(2) in the case k0=m0, let d2 > 0 and A2 > 0 be such that

A2 \ m
m0
0 Me

2 1 D
d2
+32 d+1 (6)

then

Fk0 (x1,..., xk0 ) \ A2 if diam{x1,..., xk0} [ d2 (7)

Further we shall use the notation

d0=˛
d1, if k0 < m0,

d2, if k0=m0
(8)

and

A0=˛
A1, if k0 < m0,

A2, if k0=m0
(9)

To construct the specification by the conditional Hamiltonian (3), the
integral

F
XV

exp{−bH(s | y)+m |s|} n(ds) (10)

must be finite, where XV is the configuration set in V. In (10) V ı Rd is a
bounded volume and m ¥ R. As we shall show the existence of the stabiliz-
ing potential function provides the finiteness of (10) for finite volumes V.

3. MAIN RESULTS

Theorem 1. Let (i)–(vi) be satisfied. If there exists the stabilizing
potential function, then for every finite volume V and every boundary
condition y, the integral (10) is finite.
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As a consequence of Theorem 1, we can introduce a Gibbs specifica-
tion {PV, y; V ı Rd, y ¥XVc} such that the density pV, y of the measure PV, y
with the respect to n is

pV, y(s)=
exp{−bH(s | y)+m |s|}

>XV exp{−bH(s | y)+m |s|} n(ds)
(11)

where m ¥ R.

Theorem 2. Let (i)–(vi) be satisfied and Fk0 be the stabilizing
potential function for some k0 [ m0.
Then for any m ¥ R and b > 0 there exists at least one Gibbs field cor-

responding to the specification (11).

Theorem 3. Let the conditions (i)–(vi) be satisfied and Fk0 be the
stabilizing potential function for some k0 [ m0. Then for every m ¥ R there
exists b(m) > 0 such that for any b, 0 [ b [ b(m), there exists the unique
random field t corresponding to the Gibbs specification (11) and satisfying
the condition

sup
V: diam(V) [ d0

Eeq |tV| <. (12)

for every q > 0, and where tV ¥XV.

4. PROOFS

4.1. Proof of Theorem 1

We start by introducing notations that will be used throughout. Let

Na :=˛k0(1−1/
d
`2)−d, if k0 < m0,

m0, if k0=m0
(13)

and

r :=
1
2
12`d D
d0

+32
−d

(14)
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For a bounded volume V and for a configuration y ¥XVc (|y| below
should be understood in the sense of Remark 1) we define

Ny :=[r |y|]+1 (15)

and

Nay :=max{Na , Ny} (16)

We note that the choice of r in (14) will be clear in the Section 4.2.
Lemma 4 presented below will be frequently used in the proofs of

Theorems 1, 2 and 3.

Lemma 4. Let potential functions satisfy the assumptions of
(i)–(vi), and let k0 [ m0 be the index of its stabilizing potential function.
Then

(a) for any finite V … Rd, s=”, and for any y ¥XVc, it holds that
H(s | y)=0;

(b) for any finite V … Rd, any s ¥XV with |s| > 0, and any y ¥XVc, it
holds that

H(s | y) \ −M |s|m0 exp{1+|y|/|s|} (17)

(c) for any V … Rd satisfying diam(V) < d0, for any y ¥XVc and any
s ¥XV satisfying |s| \Nay, it holds that

H(s | y) \ C0 |s|m0 (18)

where

C0=˛
A1

2m0 −k0km00 d
d(m0 −1)
1

−Me2 1
2`d D

d1
+32 d+1, if k0 < m0

A2
mm00
−Me2 1

2`d D

d2
+32 d+1, if k0=m0

(19)

The following two lemmas are used in the proof of Lemma 4.

Lemma 5. For any integers N and k such that N \ k it holds that

Nk/k! \ CkN \Nk/kk

where CkN=
N!

k!(N−k)!.
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Proof. The left inequality is obvious. CkN=
Nk

kk
for N=k. Rewrite the

right inequality as

11− 1
N
2 · · ·11−k−1

N
2 \ k!
kk

(20)

It is clear that the left hand side of (20) is increasing with N. Since (20)
holds for N=k then it holds for N> k. L

Lemma 6. For arbitrary integers P \ 1 and k \ 2 and real R \
k2

k−1 P, let

T(r1,..., rP)=C
P

i=1
1(ri \ k) r

k
i

be a function of (r1,..., rP) ¥ D, where D=RP+ 5 {(r1,..., rP) :;P
i=1 ri=R}

and 1(A) is the indicator of A. Then

inf
D
T(r1,..., rP)=T 1

R
P
,...,
R
P
2 (21)

Proof. It is clear that

T 1R
P
,...,
R
P
2=1R

P
2k P

=inf{T(r1,..., rP):; ri=R, ri \ k for all i=1,..., P} (22)

Assume next that some of ri are less than k. Let us for i=P−p+1,..., P
take ri < k, where p is an integer less than P. Then

T 1R−kp
P−p

,...,
R−kp
P−p

, rP−p+1,..., rP 2

=1R−kp
P−p
2k (P−p)

=inf{T(r1,..., rP):; ri=R, ri \ k for i [ P−p, ri < k for i > P−p}
(23)
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The value in (23) is greater than one in (22) since

R \
k2

k−1
P \

kp

1−11− p
P
21−

1
k

for any 1 [ p [ P−1. L

Proof of Lemma 4. Item (a) is evident.
Item (b). Let V, s ¥XV, |s| \ 1, and y ¥XVc be arbitrary. Then, using

(v) and Lemma 5 we obtain that for any k=2, 3,..., m0,

C
sŒ ı s

|sŒ|=k

Fk(sŒ) \ −MC
k
|s| \ −M

|s|k

k!
(24)

C
sŒ ı s, yŒ ı y

|sŒ|+|yŒ|=k, |sŒ| \ 1, |yŒ| \ 1

Fk(sŒ 2 yŒ) \ −M C
1 [ a [ k−1

Ca|s|C
k− a
|y|

\ −M C
1 [ a [ k−1

|s|a

a!
|y|k− a

(k− a)!
(25)

Thus

H(s | y) \ −M |s|m0 5 C
m0

k=2

1
|s|m0 −k k!

+ C
m0 −1

m=1

1 |y|
|s|
2m 1
m!

C
m0

k=m+1

1
|s|m0 −k (k−m)!

6

(26)

Since |s| > 0 we obtain from (26)

H(s | y) \ −M |s|m0 e 11+ C
.

m=1
(m!)−1 (|y|/|s|)m2

=−M |s|m0 exp{1+|y|/|s|} (27)

that proves the assertion (b) of the lemma.
We shall prove (c) for the volume V=G, where G is a cube with its

edge size d0/`d. It is clear that having the result for G we have it for any
volume V that can be surrounded by a cube with its diameter less than or
equal to d0. We prove (c) treating the cases k0 < m0 and k0=m0 separately.
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Let k0 < m0. Let us pick a sequence of integers P=PN that satisfies the
following two relations:

1
2k0
N [ PN [

1
k0
N, and PN=ad for some a ¥ Z+ (28)

The left hand side of the inequality holds for N \Na — k0(1−1/d`2)−d (we
could take a smaller value of Na and enlarge appropriately the coefficient 2
in the denominator of the fraction in the left hand side of (28)). For every s
we consider G represented as a union of P|s| non-intersecting small cubes,
each one with the edge length

r=
d1

`d P
1
d
|s|

(29)

Let the small cubes of the partition of G be enumerated from 1 to P=P|s|
and let si denote the sub-configuration of s in the i-th cube. Then

C
sŒ ı s

|sŒ|=k0

Fk0 (sŒ) \ C
P

i=1
C
sŒ ı si
|sŒ|=k0

Fk0 (sŒ) \ F̄k0 (r`d) C
P

i=1
Ck0|si | (30)

where

F̄k0 (r`d)=inf{Fk0 (x1,..., xk0 ) : diam{x1,..., xk0} [ r`d} (31)

We now apply Lemma 6, and after (5), (29) and the left hand side of (28) to
obtain that the right hand side of (30) is greater than

F̄k0 (r`d)
1
kk00

|s|k0

Pk0
P \
A1 |s|k0 Pm0 −k0

kk00 d
d(m0 −1)
1

\
A1 |s|m0

2m0 −k0km00 d
d(m0 −1)
1

(32)

Gathering (24), (25), (30) and (32) and employing the arguments used for
(27) gives the following relations

H(s | y) \
A1 |s|m0

2m0 −k0km00 d
d(m0 −1)
1

−M C
m0

k=2

|s|k

k!
−M C

m0 −1

m=1

|y|m

m!
C
m0

k=m+1

|s|k−m

(k−m)!

\ |s|m0 3 A1
2m0 −k0km00 d

d(m0 −1)
1

−M exp 31+|y|
|s|
44 (33)
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Since |s| \Nay we can use (15), (14) and obvious estimates to conclude that

H(s | y) \ |s|m0 1 A1
2m0 −k0km00 d

d(m0 −1)
1

−Me2 1
2`d D

d1
+32 d+12=C0 |s|m0 (34)

where C0 is defined in (19).
We next prove (c) in the case k0=m0. The procedure is similar to that

employed for the case k0 < m0. However, now we do not divide the cube G
into small ones. Therefore, the counterpart of (30) and (32) are:

C
sŒ ı s

|sŒ|=m0

Fm0 (sŒ) \ F̄m0 (d2) C
m0
|s| \ A2

|s|m0

mm00
(35)

where F̄ has been defined in (31). In the first passage of (35), we used that
|s| \ m0, since |s| \Na , and in the last one, we used (7) and Lemma 5. The
rest of the argument is identical to that for the case k0 < m0. We obtain

H(s | y) \ |s|m0 1 A2
mm00
−Me2 1

2`d D

d2
+32 d+12=C0 |s|m0 (36)

(see (19)). L

Remark 2. Now we can prove the existence of the integral (10) for
small volumes with diameter less than d0. For fixed V with diam(V) [ d0
and y on Vc, define XN

V :={s ¥XV : |s|=N}, N ¥N. Then, the partition
function (10) is

ZV, y= C
.

N=0
F
X
N
V

e−bH(s | y)+m |s|n(ds) (37)

Using (c) of Lemma 4, each term with N \Nay may be estimated from
above by emN−bC0N

m0 >XNV n(ds)=e
mN−bC0N

m0 |V|N/N!. Thus, (37) is a con-
verging series.

We prove Theorem 1 proving in the next lemma the finiteness of (10)
for any bounded volume V. Lemma 4 is essential in this proof.

Lemma 7. For any bounded volume V and the boundary configu-
ration y on Vc the following inequality

H(s | y) \ 0 (38)

holds for |s| large enough.
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Proof. Represent Rd as the union of small non-intersected cubes Gt
with the diagonal length equal to d0. We enumerate the small cubes by
points t of Zd. Let V be a cube in Rd such that it can be represented as the
union of the small cubes Gt, t ¥ U ı Zd. We assume also that

U={t ¥ Zd : |t| [ a}

where a is an integer. If s is a configuration on V then st, t ¥ U, is the sub-
configuration localized in Gt … V. The neighborhood “t of t ¥ Zd is

“t={u: Gu 5 “Gt ]”} (39)

where “Gt is taken in the sense of Remark 1. Further we use the notation

a=|“t| (40)

It follows from (14) that ar [ 1
2 .

Let L0=max{Ns: s ¥ U}, where Ns=|ss |, and Li=L0−i, i \ 0.
Assume that |s| \Na |U| then we consider a sequence Ui of subsets in U:

Ui={t ¥ U : Nt=Li}

For every i we enumerate points in Ui by the integers. For t ¥ Ui let ni(t) be
the number of t. The sequence U ji , j \ 0, of subsets of Ui is determined as

U ji={t ¥ Ui : ni(t) > j}

Clear, U0i=Ui. We build next a sequence of configurations s
i, j as the

following.

s0, 0=s,

x

s i, jGt=
˛”, if t ¥1 i−1

k=0 Uk 2 (Ui 0U ji)

sGt otherwise
, s i, j=1t ¥ U s i, jGt ,

x

The sequence composition continues until Li >Na .
The following property of the sequence is important for the estimate

of H(s). Recall that H(sGt | s“Gt )=H(sGt )+; u ¥ “t F(st, su), where “t is
defined in (39). The property satisfied for any t ¥ U ji is

H(s i, jGt | s
i, j
“Gt
) \ C0L

m0
i (41)
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This fact follows from Lemma 4(c) since the condition |s i, jGt | > [r |s
i, j
“Gt
|]+1

holds if t ¥ U ji . Recall that |s
i, j
Gt
|=Li >Na if j=ni(t).

Let W j
i=1 i−1

k=0 Uk 2 (Ui 0U ji), W=1i Ui and Ua={t: Nt [Na}. For
T ı U let T1=1s ¥ T Gs ı V. We calculate next H(sW1 | s“W1 ). We have

H(sW1 | s“W1 )= C
t ¥W
H(sGt )+ C

u, s ¥W
F(sGu , sGs )+ C

u ¥W, s ¥ “W
F(sGu , sGs )

=C
i \ 0

C
ni(t) \ 1
t ¥ Ui

o 5H(sGt )+ C
u ¥ “t0Wni(t)i

F(sGt , sGu )
6 (42)

where ;o means that the sum is taken over t such that n(t) is increasing.
Remark now that ; u ¥ “t0Wni(t)i

F(sGt , sGu )=; u ¥ “t F(s
i, ni(t)
Gt
, s i, ni(t)Gu ). Thus

H(sW1 | s“W1 )=C
i \ 0

C
t ¥ Ui

5H(s i, ni(t)Gt
)+ C

u ¥ “t
F(s i, ni(t)Gt

, s i, ni(t)Gu )6 \ C0 C
i
Lm0i |Ui |
(43)

Let U−=U0(W 2 “W). If U− is not empty then Nt [Na for any t ¥ U−.
We enumerate all sites from U− in arbitrary order and denote U−k=
{t: n−(t) [ k}, where n−(t) is a number of t in the enumeration. Using the
following relations for any t, s ¥ U−:

H(sGt ) \ −Mm0N
a m0

F(sGt , sGs ) \ −Mm0N
a m0

we obtain

H(sU1 − )= C
t ¥ U−

o 5H(sGt )+ C
s ¥ “t0(U −n(t)−1 2W)

F(sGt , sGs )
6

\ −Mm0 |U−| Na m0(1+a) (44)

The total energy of the s can be estimated now

H(sV)=H(sW1 | s“W1 )+H(sU1 − ) \ C0 C
i
Lm0i |Ui |−Mm0 |U

−| Na m0(1+a)
(45)

Now it is clear that H(sV) \ 0 if |s| is large.
The proof that we have works for the case y=”. It is clear that for

non-empty y ¥XVc the proof can be done in the similar way. In this case the
value of Na depends on y, namely, Na=max{Na , Ns, s ¥ “U}. L
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4.2. Proof of Theorems 2 and 3

The proofs are based on general theorems about existence and
uniqueness for Gibbs fields developed, respectively in refs. 4 and 5 (the
formulation of the latter may also be found in ref. 1). The criterion devel-
oped in ref. 4 provides the uniqueness given the following two condition
are satisfied.

1. The compactness condition which says that the conditional mean
value of the particle number in a small volume conditioned by a boundary
configuration can be large only if the number of particles in the boundary
configuration is large.

2. The contraction condition which estimates the variation distance
of two conditional distributions in a small volume conditioned by two
boundary configurations.

The main advantage in applying this criterion is that the contraction con-
dition must be checked only for the boundary configurations belonging to
a certain compact set.
These theorems work for lattice models, therefore, as in Section 4.1 we

partition Rd into cubes {Gt, t ¥ Zd} such that the diagonal length of each
cube is equal to d0. All cubes are equivalent in the sense that Gt=G0+t

d0

`d
.

The spin space X is the set of particle configurations in G0 endowed with a
metric such that it becomes a Polish space (see ref. 1). The models, contin-
uous and lattice, are equivalent. In fact, X becomes a Polish space if G0 is a
closed cube and so Gt are. Then adjacent cubes have common faces.
However, the lattice model with configurations on closed cubes is still
equivalent to the original continuous one (see details in ref. 1). Thus the
existence and the uniqueness of the lattice model implies the existence and
the uniqueness of the continuous one. Further G0 means the closed cube.
The neighborhood of a site t is described in (39) (see also (40)).
Further we say ‘‘x is a configuration in Gt’’ in the sense that x is an

element of X, or, in other words, x is a configuration in G0 which is
assigned to the site t ¥ Zd. We now define the specification of the corre-
sponding lattice model. Let t ¥ Zd and ȳ be a configuration of the lattice
model, ȳ ¥ XZ

d
0{t}. The Hamiltonian H(x | ȳ) is then constructed as the

energy of the interactions between the particles from x ¥ Gt and between
the particles from x and from ȳ. Then the distribution density with respect
to n on X, which is, in fact, a distribution on the configuration set in Gt,
under the condition ȳ is

Pt, ȳ(x)=Z
−1
ȳ exp{−bH(x | ȳ)+m |x|} (46)
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(for details, see ref. 1). It follows from Theorem 1 that we can define a
distribution PU, ȳ on U1=1s ¥ U Gs for finite U … Zd under a condition ȳ out
of U1 .

4.2.1. Proof of Theorem 2

In the first step we check the compactness condition that will be used
to establish both the existence and the uniqueness. Actually the compact-
ness condition for the uniqueness from ref. 4 is slightly stronger than that
for the existence from ref. 5. In the next lemma we prove the stronger
version of the condition.

Lemma 8. For any q > 0, t ¥ Zd and ȳ ¥ XZ
d
0{t}, there exist C > 0

and cu \ 0, u ¥ “t, such that

Eȳeq |x|=F
X
eq |x|Pt, ȳ(dx) [ C+ C

u ¥ “t
cueq |y(u)| (47)

and ; u ¥ “t cu is small enough.

Remark 3. In order to prove the existence it is sufficient that (47)
holds with ; u ¥ “t cu < 1. However for the needs of the proof of uniqueness,
the sum in the above inequality must be less than a certain number
determined by some specific characteristics of the potential functions (see
ref. 4). Of course, this number is less than 1.

Proof. We represent the space X=1.

N=0 XN as the union of the
subspaces XN such that configurations x ¥ XN have the fixed particle
number: |x|=N. Then,

Eȳeq |x|= C
.

N=0
eqN Pr (|x|=N)

= 1 C
Nȳ

N=0
+ C

Na

N=Nȳ+1
+ C

.

N=Na+1

2 eqN Pr(|x|=N)

=: J1+J2+J3 (48)

with the convention that J2=0, if Na [Nȳ.
We shall show that

J1 [ C1+ C
u ¥ “t
cueq |ȳ(u)|, J2 [ C

−

1, J3 [ C
'

1 (49)
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and C1, C
−

1, C
'

1 are independent on ȳ. Recall that |ȳ| denotes the number of
particles of ȳ outside of Gt and inside 1r ¥ Gt BD(r).
First, we shall estimate J1. Since q > 0 the sum J1 is less than

eqNȳ [ eqr |ȳ|+q (see (15)). Applying then the obvious inequality

D
n

i=1
xi [

1
n

C
n

i=1
xni , n ¥N, x1,..., xn \ 0 (50)

to eqr |ȳ|=D
n

i=1
eqr |y(u)|, where ȳ(u) is the part of ȳ in Gu, u ¥ “t, we obtain

eq D
u ¥ “t
eqr |ȳ(u)| [

eq

a
C
u ¥ “t
eqra |ȳ(u)| [

eq

2a
C
u ¥ “t
e2T+

eq

2a
C
u ¥ “t
e−2Te2qra |ȳ(u)| (51)

for any T > 0. Because of the convexity of the function ex, we obtain

J1 [ e2T+q/2+e−2T+q(1−2ra)/2+ C
u ¥ “t
eq |ȳ(u)| e−2T+q2ra (52)

The crucial point in the previous estimates is that 1−2ra \ 0 since

a [ 12D`d
d0
+32

d

=
1
2r

(53)

(see (14)).
Denoting C1 :=e2T+q/2+e−2T+q(1−2ra)/2 and c=cu=e−2T+q2ra,

we obtain the first inequality of (49).
Note that both C1 and cu do not depend on b, and that we can make

; cu=ca as small as desired by choosing T appropriately large.
To estimate J2 we use (b) of Lemma 4. It gives that

J2 [ C
Na

N=Nȳ+1
e (q+m) N exp{bMNm0e1+

|y|
N}
ddN0
N!

[ exp{(q+m) Na+bMNa m0e1+
1
r+dd0} :=C

−

1

We assumed above that Nȳ <Na , otherwise C
−

1=J2=0.
Finally, let us estimate J3. For |x| > Na we can apply Lemma 4(c), to

conclude that H(x | ȳ) \ 0. Hence, we have that

J3 [ C
.

N=Na+1
F

XN
e−bH(x | ȳ)+(q+m) |x|n(dx) [ C

N \Na+1
e (m+q) N

(dd0)
N

N!

[ exp{dd0e
m+q}−1=: C'1 (54)
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Remark that C1 and C
'

1 do not depend on b. However, C
−

1 depends on b
such that it is not decreasing with b. We take C=C1+C

−

1+C
'

1 . L

The Dobrushin’s existence condition (see ref. 5) rests on the lemma
just proved and on continuity of the specification with respect to boundary
configurations that will be established below.

Lemma 9. Let ȳ be a boundary configuration on Zd0{t} and let
(ȳn) be a sequence of configurations on Zd0{t} that converges to ȳ. Then
the measures Pt, ȳn weakly converge to the measure Pt, ȳ.

Proof. Because the potential functions are translation invariant, it is
sufficient to treat solely the case t=0. Therefore we omit the subscript t.
The weak convergence means that for any bounded continuous func-

tion f on X the following convergence

F
X
f(x) Pȳn (dx)Q F

X
f(x) Pȳ(dx), as ȳn Q ȳ (55)

holds. The convergence ȳn Q ȳ means that ȳn(u)Q ȳ(u) for every u ¥ “0.
The convergence ȳn(u)Q ȳ(u) is understood in the sense of the metric
on X. According to this metric, ȳn(u)Q ȳ(u) implies the following. Let
Be(y), y ¥ ȳ(u), be a e-ball around y such that no particles of ȳ(u) belong
to Be(y)0{y}. Then there exists a sequence yn ¥ ȳn(u) such that for n large
only yn of ȳn(u) belongs to Be(y). It follows from this fact and the conti-
nuity of the potential functions out of diagonals that

H(x | ȳn)QH(x | ȳ)

almost everywhere with respect to Lesbegue measure in |G0 | |x|. Hence,

F
XN
|e−bH(x | ȳn)−e−bH(x | ȳ)| n(dx)Q 0, for any N as yn Q y (56)

Recall that x ¥ XN if |x|=N. It is not difficult to obtain the inequality

Rn(f)=:F
X
f(x) Pȳn (dx)−F

X
f(x) Pȳ(dx) :

[ C
N, NŒ
em(N+NŒ) F

XN
F

XN
Œ
|f(x)| · |e−bH(xŒ | ȳ)−bH(x | ȳn)

−e−bH(xŒ | ȳn)−bH(x | ȳ)| n(dx) n(dxŒ) (57)
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Let e > 0 be small then we can find Ne such that the sum tail of the right
hand side of (57) is less than or equal to e:

C
N \Ne

C
NŒ \Ne

[ e

Taking the limit along n in (57) and using (56), we obtain

lim
nQ.
Rn(f) [ e L

Proof of Theorem 2. It is now a direct consequence of Lemmas 8
and 9. L

4.2.2. Proof of Theorem 3

In Lemma 8, we proved the compactness condition of the theorem
from ref. 4. We next verify the contraction condition (see ref. 1) that in our
case, amounts to the following requirement: If we take two different
boundary conditions ȳ1 and ȳ2 at a site t ¥ Zd, then the variation distance
V(Pt, ȳ1 , Pt, ȳ2 ) between two distributions on Xt corresponding to ȳ1 and ȳ2
must be less than the discrete distance between ȳ1 and ȳ2. This is the
general Dobrushin condition of uniqueness, which is here formulated for
the case of variation distance between measures. In our approach based on
ref. 4, we verify this condition only for a compact set of boundary config-
urations ȳ. According to Dobrushin and Pechersky (4) this compact set must
be large enough. We consider the compact sets of the type {s: eq|s| [K}.
The compact set of this kind is large if K is large. There is not any estimate
of K in ref. 4. Therefore we check the contraction condition for any K. It
gives us also the contraction condition with a large compact set as it is
necessary.

Lemma 10. For any positive integer K0 there exists b(K0) > 0 such
that for any b [ b(K0), any t ¥ Zd, and any two configurations ȳ1 and ȳ2
from XZ

d
0{t} satisfying

max
u ¥ “t
{|ȳ1(u)|, |ȳ2(u)|} [K0 (58)

the following inequality holds:

V(Pt, ȳ1 , Pt, ȳ2 ) <
1
a

C
u ¥ “t

1{ȳ1(u) ] ȳ2(u)}
(59)

where a is defined in (40).
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Proof. As in the Lemma 9 we perform all our calculations for
t=0 ¥ Zd and omit t from all subscripts in this proof.
The following estimate for the variational distance may be obtained

straightforwardly. For any ȳ1, ȳ2 ¥ XZ
d
0{0},

V(Pȳ1
, Pȳ2
)=
1
2

C
.

N=0
F

XN
|pȳ1
(x)−pȳ2

(x)| n(dx)

[
1
2

C
.

N=0
emN F

XN
: e−bH(x | ȳ1)
Zȳ1

−
e−bH(x | ȳ2)

Zȳ2

: n(dx)

[ C
.

N=1
emN F

XN
:e−bH(x | ȳ1)−e−bH(x | ȳ2) : n(dx)

+
1
2

C
.

N=1
C
.

NŒ=1
em(N+NŒ)

×F
XN

F
XNŒ
|e−bH(x | ȳ1)−bH(xŒ | ȳ2)−e−bH(x | ȳ2)−bH(xŒ | ȳ1)| n(dx) n(dxŒ)

(60)

where, to obtain the last inequality, we used that Zȳ \ 1 for any ȳ.
First, we shall prove the lemma in the case

(A) There exists u0 ¥ “0 such that the particle configuration ȳ2(u0) is
exactly the particle configuration ȳ1(u0) plus one ‘‘extra’’ particle whose
coordinate will be denoted by y0, and ȳ1(u)=ȳ2(u) for all u ¥ “0, u ] u0.

Let

Y(x) :=H(x | ȳ2)−H(x | ȳ1) (61)

Plugging (61) in (60), we get that

V(Pȳ1
, Pȳ2
) [ C

.

N=1
emN F

XN
e−bH(x | ȳ1) |1− exp{−bY(x)}| n(dx)

+ C
.

N=1
C
.

NŒ=1
em(N+NŒ) F

XN
e−bH(x | ȳ1) n(dx)

×F
XNŒ
e−bH(xŒ | ȳ1) |1− exp{−bY(xŒ)}| n(dxŒ) (62)
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Introducing

Yȳ1
(y0)= C

.

NŒ=1
F

XNŒ
e−bH(xŒ | ȳ1)+mNŒ |1− exp{−bY(xŒ)}| n(dxŒ) (63)

we thus have from (62) that

V(Pȳ1
, Pȳ2
) [ Yȳ1

(y0) Zȳ1
(64)

Our programme is as follows: we shall found estimates on Zȳ1
and

Yy1
(y0) that will show that, as bQ 0, Zȳ1

remains bounded while Yȳ1
Q 0.

These facts together with (64) will imply the lemma assertion.
We now start an argument that will estimate Zȳ1

. We note that
|ȳ1 | [ aK0, according to (58). This inequality, together with the definitions
of Nȳ1

(see (15)) and the estimate (53) imply the inequality Nȳ1
[K0 that

will be used below. We represent the partition function in the following
form:

Zȳ1
=1+ C

Naȳ1

N=1
F

XN
e−bH(x | ȳ1)+m |x| n(dx)+ C

.

N=Naȳ1+1

F
XN
e−bH(x | ȳ1)+m |x|n(dx) (65)

Due to Lemma 4, H(x | ȳ1) \ −MNm0e1+|ȳ1|/N in each term of the first
sum, while H(x | ȳ1) \ 0 in each term of the second sum. We plug in these
estimates in (65) and obtain that

Zy1
[ 1+ C

max{Na , K0}

N=1
exp{bMNm0e |“0| K0+1+mN}

ddN0
N!
+(exp{dd0e

m}−1) (66)

We now start an argument that will estimate Yȳ1
(y0) from above. It

consists of two steps.
At the first step, we estimate >XN |1− exp{−bY(x)}| n(dx). Let L

denote the number of particles of ȳ1 in “0 and let y0 be as determined
in (A). We define a set of multi-indices R as the collection of triples

r=(k, {i1, i2,..., ik1}, {j1,..., jk2}) (67)

where the first element of each triple is an integer k ¥ {2, 3,..., m0}, the
second one is a subset {i1, i2,..., ik1} of {1,..., N}, and the third element is a
subset {j1,..., jk2} of {1,..., L} that satisfy the conditions k1 \ 1, k2 \ 0, and
k1+k2=k−1. We shall use the notation:

Fk((xȳ)r)=Fk(xi1 ,..., xik1 , y0, yj1 ,..., yjk2 )
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where r as in (67), xi1 ,..., xik1 ¥ x and yj1 ,..., yjk2 ¥1u ¥ “0 ȳ1(u)0{y0}. Then
(see (61))

Y(x)=C
r ¥ R
Fk((xȳ)r) (68)

and

F
XN
|1− exp{−bY(x)}| n(dx)

=
1
N!

F
GN0

:1− exp 3 −b C
r ¥ R
Fk((xȳ)r)4: dx1 · · · dxN (69)

Using the inequality

:1− exp 3a− C
n

i=1
ai 4: [ |1− exp{a}|+C

n

i=1
|1− exp{−ai}| (70)

that holds for any n ¥N, and any a, a1,..., ar \ 0, we get that the integral in
the r.h.s. of (69) is bounded from above by the following expression:

F
GN0

:1− exp 3 −b C
r ¥ R
Fk((xȳ)r) 1{Fk((xȳ)r) < 0}(x1,..., xN)4: dx1 · · · dxN

+C
r ¥ R

F
GN0
|1− exp{−bFk((xȳ)r) 1{Fk((xȳ)r) \ 0}(x1,..., xN)}| dx1 · · · dxN

=: I1+I2 (71)

The following inequality is obvious

I1 [ −b F
GN0

C
r ¥ R
Fk((xȳ)r) 1{Fk((xȳ)r) < 0}(x1,..., xN)

× exp 3 −b C
r ¥ R
Fk((xȳ)r) 1{Fk((xȳ)r) < 0}(x1,..., xN)4 dx1 · · · dxN

Combining this estimate with the Lemma 4(b) we obtain that

I1 [ bMm0(N+L)m0 −1 exp{bMm0(N+L)m0 −1}(d0/`d)dN (72)

We next estimate I2. The assumption (v) on the potential functions
guarantees that when u1,..., uk1 ¥ G0 and v1,..., vk2 ¥ Rd0G0 (the bar means
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the closure) then Fk(u1,..., uk1 , v1,..., vk2 ) may take an infinite value, only if
u1=·· ·=uk1=v1=·· ·=vk2 . A necessary condition for that to occur, is
that all u’s belong to the boundary of G0. Hence, the function

Fk(u1,..., uk1 )

:= sup
v1 ,..., vk2

{|1−e−bFk(u1 ,..., uk1 , v1 ,..., vk2 ) 1{Fk(u1,..., uk1, v1,..., vk2) \ 0}(u1 ,..., uk1 )|} (73)

converges to 0, as bQ 0, almost surely with respect to Lebesgue measure
on Gk10 . Since for any r ¥ R,

F
GN0
|1− exp{−bFk((xȳ)r) 1{Fk((xȳ)r) \ 0}(x1,..., xN)}| dx1 · · · dxN

[ F
Gk10
Fk(x1,..., xk1 ) dx1 · · · dxk1 FGN−k10

dxk1+1 · · · dxN (74)

we have that for any e > 0 there exists be > 0 such that for all b [ be

I2 [ m0(N+L)m0 −1 e max{1; (d0/`d)dN} (75)

We now combine (72) and (75) and obtain that for all b [ be, the
following estimate is valid:

F
XN
|1− exp{−bY(x)}| n(dx)

[
1
N!
[bMm0(N+L)m0 −1 exp{bMm0(N+L)m0 −1}(d0/`d)dN

+m0(N+L)m0 −1 e max{1; (d0/`d)dN}]

[ (b+e)
1
N!
max{1; (d0/`d)dN} Mm0(N+aK0)m0 −1

× exp{bMm0(N+aK0)m0 −1} (76)

where we have used that L — |ȳ1 | [ aK0, as it follows from (58).
For the second step of the argument that estimates Yȳ1

(y0) we define

Ng :=min{N: N \Na , N \K0, and C0Nm0−Mm0(N+|“0| K0)m0 −1 >N}
(77)
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Then (see (63))

Yȳ1
(y0)=1 C

Ng

N=1
+ C

.

N=Ng+1

2 F
XN
e−bH(x | ȳ1)+m |x| |1− exp{−bY(x)}| n(dx)

(78)

We shall estimate −H(x | ȳ1) from above by M |x|m0e |ȳ1|+1, when |x| [Ng,
and by −C0 |x|m0, when |x| > Ng. The first estimate holds directly by
Lemma 4(b). The second estimate follows from Lemma 4(c), since
Ng \K0 \Nȳ1

. Plugging the estimates in (78), using (76), and substituting
|ȳ1 | by its maximal possible value aK0, we conclude that

Yȳ1
(y0) [ (b+e) Mm0

×5 C
Ng

N=1
(d0/`d)dN

(N+aK0)m0 −1

N!

× exp{bNm0eaK0+1+mN+bMm0(N+aK0)m0 −1}

+ C
.

N=Ng+1
(d0/`d)dN

(N+aK0)m0 −1

N!

× exp{−bC0Nm0+mN+bMm0(N+aK0)m0 −1}6 (79)

It follows from the above expression and the fact that eQ 0 as bQ 0 that
Yȳ1
(y0)Q 0 as bQ 0. Thus there exists b(K0) such that

V(Pȳ1
, Pȳ2
) <

1
2aK0

, for any b [ b(K0), when ȳ1, ȳ2 satisfy (A) (80)

Let now ȳ1 and ȳ2 be two arbitrary configurations that satisfy the
assumption (58) of Lemma 10. Then, there is a sequence ȳ1, ȳ2,..., ȳ j of at
most 2aK0 configurations such that each one satisfies (58), and ȳ i and ȳ i+1

differ at solely one particle (in the sense of (A)). Using the triangle inequal-
ity and the conclusion (80) we complete the proof of Lemma 10. L

Proof of Theorem 3. Lemmas 8 and 10 allow us to check the
uniqueness conditions of ref. 4. For any q > 0 and any m ¥ R there exists
b(K1 , q, m) > 0 such that for b [ b(K1 , q, m) there exists only Gibbs field t
corresponding to the specification PV, y and Eeq |tV| <. if diam(V) < d0.
According to the uniqueness theorem from ref. 4 the value of K1 depends on
D, d0 and C (see (47)). We recall that C depends on b. Thus K1 depends
on b. However, C can only increase with b (see the proof of the Lemma 8).
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Hence for any interval [0, b0] we can choose a unique C(b0) such that
Lemma 8 holds for b [ b0 with the same C — C(b0). Then K1 —K1 (b0) is a
constant when b ¥ [0, b0]. Finally, we obtain the uniqueness for any
b [min{b0, b(K1 (b0), q, m)}. Moreover we obtain the uniqueness for

b [ b(q, m)=max
b0

min{b0, b(K1 (b0), q, m)} (81)

Consider next two different positive numbers q1 and q2. Let q1 < q2.
It follows from the previous considerations that for b [min{b(q1, m),
b(q2, m)} there exists a unique Gibbs field t corresponding to the specifi-
cation. On other hand there are Gibbs fields t1 and t2 which are unique in
the regions b [ b(q1, m) and b [ b(q2, m) accordingly. It is now clear that
t=t1=t2 because of the uniqueness. Hence t is unique in the region
b [max{b(q1, m), b(q2, m)}. It is obvious that t is unique in the region

b [ b(m)=sup
q

{b(q, m)} L (82)

5. CONCLUSION REMARKS

1. The stabilizing function Fk0 has a singularity the order of which is
d(m0−1) if k0 < m0. The order of the singularity is independent on k0.
However, the greater k0 is the weaker the singularity is, because the
dimension of the domain of Fk0 increases with k0.

2. We require in this work that the stabilizing potential Fk0 has its
singularity near diagonal, if k0 < m0. It means that Fk0 (x1,..., xk0 ) takes
large values if the co-ordinates x1,..., xk0 of all k0 particles pertain to a
small volume of Rd, that is, when diam{x1,..., xk0} is small. However, our
technics permits to extend our results to the cases when Fk0 takes large
values, when l0, l0 < k0, variables of {x1,..., xk0} pertain to a small volume.

3. We can extend our results to the case when there is a finite
number of potential functions Fm0+1, Fm0+2,... all taking non-negative
values. This extension can be done with the same technics we use.
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